

Not All IoT Devices Are Born The Same

Vs.

Smart

smart home security device

DSP enables the creation of smart IoT devices!

IoT Layers – Connected vs. Smart

Example: a truly smart home controller would ...

Domain	Processing	Smart Analysis	Actions
Speech	Speech recognition	Voice command Speaker verification	Turn on/off lights, window shades, appliances Allow access to devices per user profiles
Sound	Sound sensing	Is music playing? Which music? Alert noises? (e.g. breaking glass)	Change light-bulb color per music type Call security company; notify owner
Vision	Face recognition	Who is in the house? Resident or guest?	Set mood (color, music) per person or group Send message to owner about guests presence
Motion	Motion detection	People moving in home ? Device being moved ?	Learn habits of tenants Alert about anomalies
Connectivity	SW PHY	Is Wi-Fi available ?	Yes – use in-home Wi-Fi No – use LTE (preferred for security events)

But where should the **smartness** be – local, cloud?

Smart IoT Platform – DSP Enabled

► CEVA IoT solutions for **Connectivity** + **Sensing** + **Intelligence**

Challenges in IoT Connectivity

Multiple and constantly evolving communication standards
The IoT is composed of an almost endless list of comms standards

	ANT+	Bluetooth	LTE	DECT	NFC	PLC	Wi-Fi	ZigBee	Z-Wave	Others
Wearables	•	•	•		•		•			•
Smart Devices	•	•	•		•		•			•
Smart Homes		•	•	•	•	•	•	•	•	•
Cars		•	•				•			•
Smart Cities						•	•	•	•	•
Industrial Internet					•		•			•

CEVA's DSP based SW PHY allows multi-standard connectivity platform

CEVA-WiFi Platform

- Based on CEVA-TeakLite-4 DSP + PHY and MAC hardware
 - Enables most power efficient design
 - Scalable for other connectivity standards
 - TeakLite-4 available for additional functionality such as audio, voice, sensing
- Down to 500K gates
 - Complete solution: DSP, PHY, MAC, HW, SW
- Less than 30mW for 1Mbps 802.11n 1X1 in 55nm

CEVA-Bluetooth Platform

- CEVA-Bluetooth
 - Classic Bluetooth (2.1+EDR, 3.0)
 - Low Energy Bluetooth (4.0/4.1/4.2) Single/Dual Mode
 - CEVA-Bluetooth BB HW integrated with TL4
 - CEVA-Bluetooth Controller SW stack running on TL4
 - Customizable RF interface for 3rd party Radio
- Single Mode
 - Reduced HW/SW footprint for low power & cost
- Dual Mode
 - Addition of low energy protocol HW/SW to Classic BT
- Bluetooth 5.0 is just around the corner
 - Audio over BLE, IPv6 over BLE, extended range and much more

LTE MTC (Machine Type Communication) CEVA

- LTE-CAT0 is the first 3GPP category that solves MTC requirements
 - ► Robust and reliability in building coverage
 - ► Better cell-edge performance
 - Support many users
 - Specify LTE device with cost comparable to EGPRS - motivate migration of MTC traffic from 2G to LTE
 - ► Enhance LTE coverage by up to 15dB
 - ► Increase battery life allow 10 years of operation with 2xAA batteries

2014	2015-2016	2017-2018
2G m2m solutions dominate 3G used to supplement bespoke solutions. 4G (Rel-9, Cat-3) devices begin to be used in relatively small volume, and for high value connectivity. Proprietary wide area access technologies using licence-exempt spectrum.	4G solutions based on LTE Release 12 will emerge in greater volume and terminal costs will reduce. 4G becomes cost-competitive relative to other existing cellular technologies	Cellular IoT will be deployed on a larger scale offering an optimised solution for ultra low-cost m2m connectivity and deeper coverage.

Always-On Multiple Sensing

Sensing in IoT is based on various and growing list of sensors

Low cost, low power sensors are common

- However, low cost/power generally means noisier sensors
- So where do DSPs fit in sensing?
 - Need a lot of signal-cleaning (filtering, smoothing, calibrating, etc') in order to extract meaningful data
 - Intelligent context awareness
 - DSP requirements further increase with introduction of mics and biometric sensors

Power consumption is key criteria: need <2mA for the complete always-on use case

N-Axis Sensor Fusion Using CEVA-TL410 CEVA

- Combined processing of sensory data from disparate sources: accelerometer, gyroscope and magnetometer etc.
- Contextual awareness, for example:
 - Person standing, walking, running
- Gesture control, for example:
 - Single/double tap, air signature, shake, tilt, pick up
- Indoor navigation, for example:
 - Pedometer, heading and pedestrian dead reckoning (lat/lon)
- Requires ultra low-power DSP to accurately deduce motion and environments data, eliminate false readings and leave sufficient headroom

CEVA-TL410 DSP performance: 0.5-5 MIPS
Running the Same Code on CPU Takes Over 100X More Power

Always-On Voice Activation

► CEVA-TL410 enables < 20uW DSP power consumption at 28nm for always-on voice trigger and command

Speech Recognition SW

- Voice Trigger
- Voice Command
- Speaker verification

CPU/OS

DSP-Based Sensing

Multiple Sensing Technologies Using a Single DSP

IoT Layers – Local Intelligence vs. Cloud

- ▶ DSP powered local intelligence enables:
 - Camera/microphone/other sensors raw data does not need to be sent to the cloud, only processed meta-data is being sent → Increased privacy

▶ Reduced data bandwidth, transfer overhead and processing latency to/from cloud → lower on-device power + lower cost of cloud service

► Efficient processing for scene analysis (sound/vision) with lower power than GP CPU/GPU → Lower power consumption, longer battery life

► Increased security by using multiple connectivity standards → Using SW PHY allows switching from Wi-Fi to LTE for tamper-proof security actions

Local intelligence is key for smart IoT devices!

DSP-Based Audio Analytics

Valuable Sound Classification & Analysis

- Mobile, Wearable, Smart Home and Robot applications
 - Voice recognition and speaker identification
 - Speaker separation through beamforming
 - Environment sensing (e.g. cinema, train)
 - Emotion detection
- Security applications can alert upon:
 - Glass breakage
 - Baby crying
 - Keyword (virtual red button)
 - Aggression

CEVA-TL421 as an Audio Analyzer

- Extensive computational power enables a standalone (cloudless) audio analysis
 - 4th generation native 32-bit quad-MAC DSP
 - ▶ Up to 1.5 GHz @ 28nm HPM
- Efficient processing of large amounts of data
 - Handcrafted data cache and DMA
 - ▶ 128-bit data bandwidth
 - Dual load/store units
- Enables intensive noise reduction required for accurate analysis
- Lowest-power on its category

Advanced contextual awareness includes intelligent sound analysis and requires a powerful programmable audio/voice processor

DSP-Based Vision Analytics

Computer Vision & Video Analytics

- Markets: Mobile, Wearable, Smart Home, Smart Cities, Security & Surveillance
- Moving more video analytics to the camera end (reduce cloud/server processing)
- Example Applications
 - Human & object recognition
 - Face recognition, gesture recognition
 - Tracking based on feature and pattern matching
 - Emotion detection
 - Image and video enhancement for complex outdoor conditions

- 4th generation computer vision DSP
- ▶ Up to 1.2GHz @ 28nm HPM
- Combines fixed and floating-point math
- ▶ Up to 4096-bit vector processing per cycle
- Efficient processing of large amounts of data
 - Innovative DMA mechanism capable of transpose, crop and checkered data on the fly
 - 512-bit bandwidth
- Fully equipped with SW framework, library and tools for easy SW porting and optimization

Growing need for sophisticated digital analysis on Camera calls for dedicated CV programmable processors

CEVA-TL4 Outperforms Common MCU/CPU

Power sensitive use-cases:

MP3 decode **Power** and **MIPS** consumption compared to optimized CEVA DSP [Core only, 40nmLP]

DSP typical power saving:

^{*} Core only (DSP, CPU, MCU)

CEVA IoT Platform Enablers

We enable **smart IoT devices**, come build with us!

THANK YOU

May 2015

www.ceva-dsp.com