FD-SOI Adaptive Body Bias solutions to accelerate energy-efficient SoC designs

Pierre Gazull – Business Development & Product Marketing Manager

ChipEx 2019 Tel Aviv - May 13th

Not just a supplier of Technology, but provider of the Dolphin Integration know-how!
IoT SoC: Missions & Challenges

- Increase Battery Autonomy
- Boost Performances
- Reduce Time-to-Market
Energy-Efficiency Challenges

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Leakage Current (μA / MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>SoC running - All blocks ON</td>
<td>µA / MHz</td>
</tr>
</tbody>
</table>
| **Active-Low Power, Sleep** | SoC running in low-power mode
MCU OFF - RF OFF - Peripherals are active | µA / MHz |
| **Deep Sleep, Trigger, ...** | Logic Domain & SRAM in retention mode
IO and AON/RTC active | < 1 μA |
| **Stop** | Logic domain OFF - SRAM OFF
IO disabled - AON/RTC active | < 500 nA |
| **Shut Off** | Only wake-up pin remain active
AON/RTC is OFF | < 200 nA |

Energy-Efficient IP
- For Mostly-Off Domain
- Low Leakage IP
 - for Sleep Mode & AON Domain

ChipEx 2019
FD-SOI ENABLES SINGLE CHIP SOC

Power Management Unit
Clock Management Unit
Security Unit
Processing & Memory
Energy Harvesting
Always-On Domain
RF
Audio CODEC
IOs & Interfaces

mmWave RF-CMOS
Best CMOS mmWave with similar performance to SiGe radios
Source: GF, GTC2017

Ultra Low Voltage
Operation at minimum energy point (<0.4V)
Source: Sugii, Low Power El. Appl. 2014

Body Bias
Untrimmed
Leakage limit
Trimmed
Frequency
Leakage spread reduction
Performance Boost
Source: ST, ICICDT17, P. Flatresse

Reliability
Neutron-SEU FT-Mb
20x Soft Error Rate improvement vs. bulk
Source: ST, Shanghai FDSOI forum, 2015

Ultra Low Voltage Operation at minimum energy point (<0.4V)

Source: Sugii, Low Power El. Appl. 2014

Energy Harvesting

Source: GF, GTC2017

Best CMOS mmWave with similar performance to SiGe radios

Leakage frequency performance boost

Leakage spread reduction

Untrimmed
Trimmed
Leakage limit

Frequency

Source: ST, ICICDT17, P. Flatresse

× energy efficiency gains at ULV

Source: ST, Shanghai FDSOI forum, 2015

20x Soft Error Rate improvement vs. bulk

Source: ST, Shanghai FDSOI forum, 2015

5X energy efficiency gains at ULV

Source: ST, Shanghai FDSOI forum, 2015

Vendor A 45nm Bulk
Vendor A 45nm Bulk
ST 28nm Bulk
ST 28nm Bulk
ST 28nm FD-SOI

Reliability

Neutron-SEU FT-Mb
20x Soft Error Rate improvement vs. bulk

Source: ST, Shanghai FDSOI forum, 2015

5X energy efficiency gains at ULV

Source: ST, Shanghai FDSOI forum, 2015

20x Soft Error Rate improvement vs. bulk

Source: ST, Shanghai FDSOI forum, 2015

5X energy efficiency gains at ULV
BODY-BIAS: A KNOB FOR ENERGY-EFFICIENCY

Past
- Low V_{dd} potential and UWVR capability
- Intrinsic radiation hardness
- Body-bias **boost** mode

Now
- **Static FBB** for process variations trimming

Future
- **Adaptive Body Bias (ABB)** for compensating
 - Temperature variations in Low V_{dd} range
 - Aging variations in Nom to High V_{dd} range

Past
- **Low V_{dd} potential and UWVR capability**
- **Intrinsic radiation hardness**
- **Body-bias boost** mode

Now
- **Static FBB** for process variations trimming

Future
- **Adaptive Body Bias (ABB)** for compensating
 - Temperature variations in Low V_{dd} range
 - Aging variations in Nom to High V_{dd} range

Past
- Low V_{dd} potential and UWVR capability
- Intrinsic radiation hardness
- Body-bias boost mode

Now
- Static FBB for process variations trimming

Future
- Adaptive Body Bias (ABB) for compensating
 - Temperature variations in Low V_{dd} range
 - Aging variations in Nom to High V_{dd} range
• **ABB IP** for Process, Voltage, Temperature & Aging compensation

• **All-in-one IP** including body-bias voltage regulator, low power sensors and control loop

• **Foundation IP** independent

• **Ultra wide voltage range**: 0.4V to 0.945V

• < 1% area overhead vs. logic area

• < 10 µW power overhead
• 2 Sensors
 ➞ VBBCO monitor for coarse-grain compensation
 ➞ Distributed Timing Monitors (DTM) for fine-grain compensation

• 2 independent N- & P-WELL regulation loops
 ➞ VNW regulation refers to Fclk
 ➞ VPW regulation refers to VNW
Energy Efficiency Gain
Adaptive Body-Bias VS. No Biasing

Typical IoT power range

- ARM® Cortex®-M4
- GF 22FDX™

High performance: Nominal Voltage (V)
- 0.9 x1.5
- 0.8 x1.8

Nominal performance
- 0.65 x2.3

Low power
- 0.5 x4.8

Ultra low power
ADAPTIVE BODY-BIASING IN 22FDX™ SoC DESIGN FLOW

Seamless Integration in 22FDX™ Design Flow

Scalable to any SoC Architecture
Stand-Alone Body-Bias Generator

- Several configurations to support various loads size
- Ultra low current consumption < 10µW in active/shutdown mode

Zero Power BBGEN for Always-ON Domain

- AON is dominated by leakage
- Hungry charge pump not an option
- RBB only as an attractive solution to reduce leakage

Adaptive Body-Bias for Mostly-Off Domain

- All-in one IP for PVTA compensation
- Ultra Wide voltage range
- < 1% area overhead vs. logic area
- < 10µW power overhead

Energy-Efficiency is a function of PVT sensors accuracy

- SlackGuard™: Aging monitors
 - Timing margin detection of critical paths
- DTM: Delay Timing Monitor
 - Fine grain compensation
- VBBCO: Body Bias Controlled Oscillator
 - Coarse grain compensation
Power Management IP Platform

Embedded PMU/ACU
- Scalable and configurable
- Boot-up sequence management
- Body-Bias, DVFS, AVS support

Voltage Regulators
- High Efficiency DC/DC
- Ultra-low quiescent LDO
- 95% Efficiency
- Quiescent down to 150 nA

Power Gating Solutions
- Ultra-low leakage IO & logic power gating
- IO Leakage reduction up to x14

uLP Oscillators
- 32 kHz RC & XTAL
- Ultra Low power < 80 nA

Body-Biasing
- PVTA Compensation
- 5x Energy-Efficiency ABB
- 7x Energy-Efficiency ABB + AVS
ADAPTIVE BODY-BIAS ROADMAP

IoT
- **2018**: Proof of Concept
- **19'Q1**: Preliminary Design Kit
- **19'Q2**: Ready For Production 22FDX™
- **20'Q2**: Design Kit

Automotive
- **2018**: Preliminary Design Kit
- **19'Q1**: Design Kit SlackGuard™
- **20'Q1**: Ready For Production 22FDX™

Q1: First Quarter
Q2: Second Quarter
Q3: Third Quarter
Q4: Fourth Quarter
Q2/Q3: Second and Third Quarter

ChipEx 2019
thank you